Networked Inflation Expectations: a closer look at Professional Forecasters

Macro Club

Mridula Duggal and Gabriela Stockler*

UAB and BSE

October 27, 2022

Roadmap

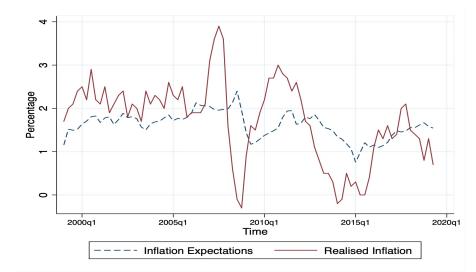
Introduction

ECB SPF

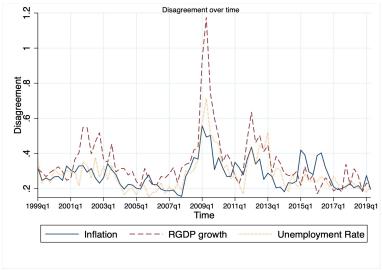
The Model

Conclusion

Motivation


- Central Banks care about people's expectations
 - ightarrow Households, Firms, Professional Forecasters
- Professional Forecasters are experts
 - $\rightarrow~$ "Superior" information and better processing skills
 - \rightarrow Reflect the *private sector* expectations
- Central Banks *directly receive* Professional Forecasters *opinions* on future economic outcomes
 - \rightarrow European Central Bank: Survey of Professional Forecasters (SPF)

SPF \longrightarrow Central Bank's belief \longrightarrow Policy \longrightarrow Economic Outcomes


Motivation

- The average of forecasts influences Central Banks policy decisions But...
- Professional Forecasters come from a close pool of industry professionals
 - $\rightarrow~$ They know each other and often the interest of their job is similar
 - $\rightarrow\,$ Subjective to environmental characteristics: social circles, geographical location
- There is disagreement: implies that agents do not have the same information set

SPF Mean Inflation Forecast

SPF Disagreement

Measure of Disagreement:
$$\sigma_{t,h}^x = \sqrt{\frac{1}{n_t}\sum_{i=1}^{n_t} (\mathbb{E}(x_{it,t+h}) - \mathbb{E}(x_{t,t+h}))^2}$$

Research Question

 \rightarrow How do Professional Forecasters account for others Forecasters?

- Does this matter for their predictions?
- For the Central Bank's Expectation?

We argue that they do so through an informational channel = network:

- Professional Forecasters' have private information and interact with each other
- Difference and overlapping of information drive their behavior
- In turn, affects a Central Bank's belief about inflation process who is *unaware* about this mechanism

This Paper

- Empirical part European Central Bank Survey of Professional Forecasters
 - $\rightarrow~$ Why forecasts are heterogeneous?
 - $\rightarrow~$ What is the underlying network?
- Theoretical part
 - \rightarrow Dynamic model of expert advice with
 - i) endogenous public information
 - ii) network sharing of information

Literature

- Networks: Social Learning, Information Sharing
 - → Golub and Jackson, 2010, DeMarzo, Vayanos, and Zwiebel,
 2003,Dasaratha, Golub, and Hak, 2020,Golub and Sadler, 2017
- Disagreement and Professional Forecaster Expectations
 - → Mankiw, Reis, and Wolfers, 2003, Patton and Timmermann, 2010, Coibion and Gorodnichenko, 2012, Andrade and Le Bihan, 2013, Andrade, Crump, et al., 2014

Roadmap

Introduction

ECB SPF

The Model

Conclusion

ECB Survey of Professional Forecasters

- Time 1999Q1 2019Q1
- Forecasters mostly include forecasting firms, research firms, investment banks, universities.
- Rolling forecast horizon with one-year-ahead or two-year-ahead forecasts.
- Forecast is one-year-ahead ahead of the last realised observation
- ECB uses aggregate results

ECB Survey of Professional Forecaster

rcentage change in the euro area all items Harmonised Index of Consumer Prices (HICP), as 📑 published by Eurostat.

	Mean point estimates (all survey rounds)						
	Survey round	Current calendar year	Next calendar year	Calendar year after next	One year ahead	Two years ahead	Longer term (five years ahead)
	1999 Q1	1.0	1.3		1.2	1.5	1.9
	1999 Q2	1.1	1.5		1.5	1.7	
	1999 Q3	1.1	1.5		1.5	1.7	
	1000.01				1.5	1.7	

Roadmap

Introduction

ECB SPF

The Model

Conclusion

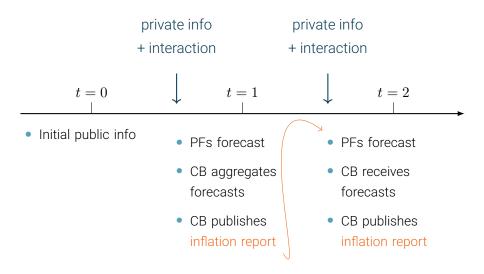
Theoretical Framework

Dynamic model of expert advice and Endogenous Public Information

- Unknown inflation state: $\bar{\pi} \sim N(\mu, \sigma^2)$
- Common prior info: $\bar{\pi} \sim N(y_0, \sigma_0^2)$
- A Central Bank (CB)
- i = 1, ..., N Professional Forecasters (PF)
- j = 1, ..., N + 1 agents trying to learn π_0 over time $t \ge 0$:

$$\min u_{jt} = -E\left[(\pi_{jt} - \bar{\pi})^2 |\mathcal{I}_{jt}\right] \tag{1}$$

$$\pi_{jt} = E\left[\bar{\pi}|\mathcal{I}_{jt}\right] \tag{2}$$


Forecasters' Network G: private information sharing

Theoretical Framework

- PFs use private information to make inflation forecasts
- CB relies on PFs' advices to infer about current inflation
- At each time t,
 - $\rightarrow~$ PFs have private info and interact in the network ${\bf G}$
 - $\rightarrow~$ Each PF reports to the CB his forecast about inflation
 - $\rightarrow~$ The CB aggregate forecasts and publishes a public report on the state of inflation
 - \rightarrow At t + 1, PFs use *past report* and *new private info* to update his inflation forecast

ightarrow ...

Timeline

Professional Forecasters

Each PF *i*'s information set \mathcal{I}_{it} consists of

- private information: $s_{it} = \bar{\pi} + e_{it}$, $e_{it} \sim N(0, \sigma_e^2)$
- social information: $z_{it} = \bar{\pi} + e_{zit}$, $e_{zit} \sim N(0, \sigma_{ei}^2)$
- public signal: $y_{t-1} \sim N(\psi_t \cdot \bar{\pi}, \sigma_y^2) \longrightarrow \text{endogenous}$
 - $ightarrow \psi_t$ can be different than 1
 - $\rightarrow~$ Perceived to summarize all relevant private information (past inflation estimates) \rightarrow "memoryless"

Time-t forecast is then

$$\pi_{it} = E\left[\bar{\pi}|s_{it}, z_{it}, y_{t-1}\right]$$
(3)

Professional Forecasters

- The network ${f G}$
 - $\rightarrow g_{ij} = \{0,1\} \forall i \in N$: if $g_{ij} = 1$ PFs i and j are connected
 - \rightarrow *i*'s neighborhood: $N_i = \{j \neq i : g_{ij} = 1\}$
 - ightarrow i's degree: $d_i = \sum_{j
 eq i, j \in N} g_{ij}$
- Truthful sharing of current private signals \rightarrow social information

$$z_{it} = \frac{1}{d_i} \sum_{j \in N_i} s_{jt} \tag{4}$$

- Why the network?
 - $\rightarrow~$ It captures behavior among PFs that may drive their estimate and is not known to the CB

Professional Forecasters

• By Bayes' rule, i's inflation estimate at t is

$$\pi_{it} = \frac{\kappa_e}{\kappa_{t-1} + \kappa_e(1+d_i)} \sum_{k:j \in N_i \cup i} s_k + \frac{\kappa_{t-1}}{\kappa_{t-1} + \kappa_e(1+d_i)} y_{t-1}$$
(5)

•
$$\bar{\pi} | \mathcal{I}_{it} \sim N\left(\pi_{it}, \left[\kappa_{t-1} + \kappa_e(1+d_i)\right]^{-1}\right)$$

Central Bank

- At each t, CB's information set \mathcal{I}_{ct}
 - ightarrow PFs' forecasts: $oldsymbol{\pi}_t \equiv \{\pi_{it}\}_{i \in N}$
 - ★ It does not know the network
- CB aggregates π_t to infer about inflation:

$$E\left[\bar{\pi}|\boldsymbol{\pi}_t\right] \equiv \pi_{ct} \equiv \frac{1}{N} \sum_{i \in N} \pi_{it} \tag{6}$$

• "Naive CB": publishes the inflation report

Bayesian

$$y_t | \bar{\pi} \sim N\left(\pi_{c_t}, \sigma_y^2\right) \tag{7}$$

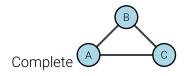
where σ_y^2 is exogenous

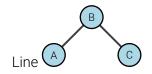
Timeline: in between periods

• past report y_{t-1} (public info)

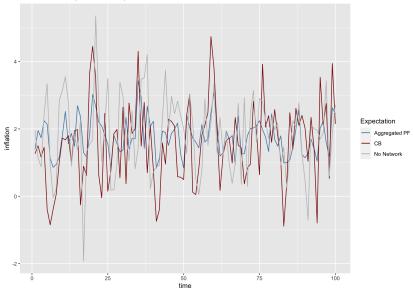
- PFs forecast: $\{\pi_{it}\}_{i \in N};$
- CB aggregates forecasts: π_{ct};

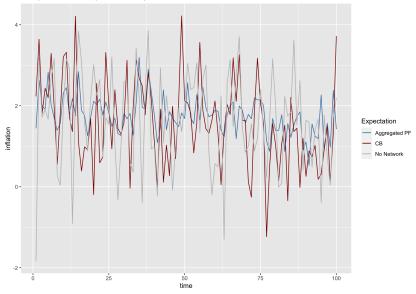
• CB publishes y_t


Theoretical Framework


Implications

- Professional Forecasters have *more information* and certain information can have *more weight* on various forecasts
- Disregarding the network, the Central Bank is not aggregating independent advices
 - \rightarrow Aggregate forecast may reflect more certain information which it should not from the CB's perspective
- In turn, Professional Forecasters are also affected since they use the CB as a source of information as well


Simple example: 3 Forecasters connected in two different ways


Simulation

Line Network - (state=1.7852)

Simulation

Complete Network - (state=1.7852)

Roadmap

Introduction

ECB SPF

The Model

Conclusion

Conclusion

- ⇒ What role does the network structure play in determining Forecasters and Central Bank's beliefs?
 - Heterogeneity and sharing of information drive Professional Forecasters' advices
 - The Central Bank is *unaware* of this network effect, but this has implication for CB's beliefs
 - Thus it is important to *empirically identify* what is the network among Professional Forecasters

Open Questions

- Are Professional Forecasters' strategic?
 - $\rightarrow~$ Do they want to "beat" each others forecast?
 - $\rightarrow~$ Not clear: no reward, ECB only concerned about aggregate forecast
- Do they learn from each others forecast? Or information?
- The average forecast may not be the consensus ("wisdom of the crowd")
- How can the ECB ensures that Professional Forecasters are submitting their best forecast?

Thank you!

References I

Andrade, Philippe, Richard Crump, et al. (2014). *Fundamental disagreement*. Working papers. Banque de France. URL:

https://EconPapers.repec.org/RePEc:bfr:banfra:524.

Andrade, Philippe and Hervé Le Bihan (2013). "Inattentive professional

forecasters". Journal of Monetary Economics 60.8, pp. 967–982. URL:

https://EconPapers.repec.org/RePEc:eee:moneco:v:60:y:2013:i: 8:p:967-982.

Coibion, Olivier and Yuriy Gorodnichenko (2012). "What can survey forecasts tell us about information rigidities?" *Journal of Political Economy* 120.1, pp. 116–159.

Dasaratha, Krishna, Benjamin Golub, and Nir Hak (2020). "Learning from neighbors about a changing state". *Available at SSRN 3097505*.

References II

DeMarzo, Peter M, Dimitri Vayanos, and Jeffrey Zwiebel (2003). "Persuasion bias, social influence, and unidimensional opinions". *The Quarterly journal of economics* 118.3, pp. 909–968.

Golub, Benjamin and Matthew O Jackson (2010). "Naive learning in social networks and the wisdom of crowds". *American Economic Journal: Microeconomics* 2.1, pp. 112–49.

Golub, Benjamin and Evan Sadler (2017). "Learning in social networks". *Available at SSRN 2919146.*

Mankiw, N Gregory, Ricardo Reis, and Justin Wolfers (2003). "Disagreement about inflation expectations". *NBER macroeconomics annual* 18, pp. 209–248. Patton, Andrew and Allan Timmermann (2010). "Why do forecasters disagree? Lessons from the term structure of cross-sectional dispersion". Journal of Monetary Economics 57.7, pp. 803–820. URL: https://EconPapers.repec.org/RePEc:eee:moneco:v:57:y:2010:i: 7:p:803–820.

Appendix

Central Bank and Network Knowledge • Book

• For the CB to be a rational Bayesian agent, it *must* know the network structure: recall (5)

$$\pi_{ct} \equiv \frac{1}{N} \sum_{i \in N} \pi_{it} = \frac{1}{N} \sum_{i} (\psi_i \cdot s_{it}) + \psi_y \cdot y_{t-1}$$

where

$$\psi_i(G, \mathbf{s}_t) \equiv \psi_i = \frac{\kappa_e}{\kappa_0 + \kappa_e(1 + d_i)} + \sum_j \frac{g_{ij} \cdot \kappa_e}{\kappa_0 + \kappa_e(1 + d_j)}$$
(8)
$$\psi_y(G, \mathbf{s}_t) \equiv \psi_y = \frac{\kappa_0}{N} \cdot \sum_i \left[\frac{1}{\kappa_0 + \kappa_e(1 + d_i)}\right]$$
(9)

$$\pi_{ct}|\bar{\pi} \sim N\left(\left[\sum_{i}\psi_{i}+\psi_{y}\right]\cdot\pi_{0},\left[\sum_{i}\psi_{i}^{2}\right]\cdot\sigma_{e}^{2}+\psi_{y}^{2}\cdot\sigma_{0}^{2}\right)$$
(10)

CB Naive

- "Naive CB": it does not try to make inference on the aggregate forecast π_{ct}
- Another possibility is to say CB has an additional source of information:

$$c_t = \pi_0 + e_{ct} \qquad N(0, \sigma_c^2)$$

$$y_t | \pi_0 \sim N\left(\frac{\pi_{c_t} + \pi_0}{2}, \sigma_c^2\right)$$
(11)

Utility with Network Effects

$$u_{i} = -E\left[r(\theta_{i} - \theta)^{2} + (1 - r) \cdot \left(\theta_{i} - \frac{1}{d_{i}}\sum_{j \in N_{i}}\theta_{j}\right)^{2}|I_{i}\right] \qquad (12)$$
$$\longrightarrow \theta_{i} = r \cdot E(\theta|I_{i}) + (1 - r) \cdot \frac{1}{d_{i}}E\left[\sum_{j \in N_{i}}\theta_{j}|I_{i}\right]$$

Assume

$$E\left[\sum_{j\in N_i} \theta_j | I_i\right] = \sum_{j\in N_i} s_j \tag{13}$$